Exercise 40

By comparing Definitions 2, 3, and 4, prove Theorem 2.3.1.

Solution

Theorem 2.3.1 is on page 99 and says that

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

Suppose first that

$$
\lim _{x \rightarrow a} f(x)=L
$$

According to Definition 2, this is logically equivalent to

$$
\begin{equation*}
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon \tag{1}
\end{equation*}
$$

for all positive ε. Notice that the hypothesis can be rewritten as

$$
\begin{gathered}
|x-a|<\delta \\
-\delta<x-a<\delta \\
a-\delta<x<a+\delta
\end{gathered}
$$

This interval is the union of two smaller intervals, $a-\delta<x<a$ and $a<x<a+\delta$. As a result, (1) becomes

$$
\text { if } \quad(a-\delta<x<a \quad \text { or } \quad a<x<a+\delta) \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Break up this if-then statement into two.

$$
\left\{\begin{array}{lll}
\text { if } \quad a-\delta<x<a & \text { then } & |f(x)-L|<\varepsilon \\
\text { if } \quad a<x<a+\delta & \text { then } & |f(x)-L|<\varepsilon
\end{array}\right.
$$

Therefore, by Definition 3 and Definition 4, respectively,

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow a^{-}} f(x)=L \\
\lim _{x \rightarrow a^{+}} f(x)=L
\end{array} .\right.
$$

Suppose secondly that

$$
\lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x) .
$$

Then

$$
\left\{\begin{array}{l}
\lim _{x \rightarrow a^{-}} f(x)=L \\
\lim _{x \rightarrow a^{+}} f(x)=L
\end{array} .\right.
$$

According to Definition 3 and Definition 4, these limits are logically equivalent to

$$
\left\{\begin{array}{llll}
\text { if } & a-\delta<x<a & \text { then } & |f(x)-L|<\varepsilon \\
\text { if } & a<x<a+\delta & \text { then } & |f(x)-L|<\varepsilon
\end{array}\right.
$$

respectively. Combine these if-then statements.

$$
\begin{equation*}
\text { if } \quad(a-\delta<x<a \quad \text { or } \quad a<x<a+\delta) \quad \text { then } \quad|f(x)-L|<\varepsilon . \tag{2}
\end{equation*}
$$

The union of these two intervals, $a-\delta<x<a$ and $a<x<a+\delta$, is

$$
\begin{gathered}
a-\delta<x<a+\delta \\
-\delta<x-a<\delta \\
|x-a|<\delta .
\end{gathered}
$$

Consequently, (2) becomes

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon .
$$

By Definition 2, this is logically equivalent to

$$
\lim _{x \rightarrow a} f(x)=L
$$

Theorem 2.3.1 is proven.

